Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides.

Identifieur interne : 000674 ( Main/Exploration ); précédent : 000673; suivant : 000675

The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides.

Auteurs : Timothy James Tschaplinski [États-Unis] ; Paul E. Abraham [États-Unis] ; Sara S. Jawdy [États-Unis] ; Lee E. Gunter [États-Unis] ; Madhavi Z. Martin [États-Unis] ; Nancy L. Engle [États-Unis] ; Xiaohan Yang [États-Unis] ; Gerald A. Tuskan [États-Unis]

Source :

RBID : pubmed:30689716

Descripteurs français

English descriptors

Abstract

BACKGROUND AND AIMS

The use of woody crops for Quad-level (approx. 1 × 1018 J) energy production will require marginal agricultural lands that experience recurrent periods of water stress. Populus species have the capacity to increase dehydration tolerance by lowering osmotic potential via osmotic adjustment. The aim of this study was to investigate how the inherent genetic potential of a Populus clone to respond to drought interacts with the nature of the drought to determine the degree of biochemical response.

METHODS

A greenhouse drought stress study was conducted on Populus deltoides 'WV94' and the resulting metabolite profiles of leaves were determined by gas chromatography-mass spectrometry following trimethylsilylation for plants subjected to cyclic mild (-0.5 MPa pre-dawn leaf water potential) drought vs. cyclic severe (-1.26 MPa) drought in contrast to well-watered controls (-0.1 MPa) after two or four drought cycles, and in contrast to plants subjected to acute drought, where plants were desiccated for up to 8 d.

KEY RESULTS

The nature of drought (cyclic vs. acute), frequency of drought (number of cycles) and the severity of drought (mild vs. severe) all dictated the degree of osmotic adjustment and the nature of the organic solutes that accumulated. Whereas cyclic drought induced the largest responses in primary metabolism (soluble sugars, organic acids and amino acids), acute onset of prolonged drought induced the greatest osmotic adjustment and largest responses in secondary metabolism, especially populosides (hydroxycinnamic acid conjugates of salicin).

CONCLUSIONS

The differential adaptive metabolite responses in cyclic vs. acute drought suggest that stress acclimation occurs via primary metabolism in response to cyclic drought, whereas expanded metabolic plasticity occurs via secondary metabolism following severe, acute drought. The shift in carbon partitioning to aromatic metabolism with the production of a diverse suite of higher order salicylates lowers osmotic potential and increases the probability of post-stress recovery.


DOI: 10.1093/aob/mcz002
PubMed: 30689716
PubMed Central: PMC6821281


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides.</title>
<author>
<name sortKey="Tschaplinski, Timothy James" sort="Tschaplinski, Timothy James" uniqKey="Tschaplinski T" first="Timothy James" last="Tschaplinski">Timothy James Tschaplinski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Abraham, Paul E" sort="Abraham, Paul E" uniqKey="Abraham P" first="Paul E" last="Abraham">Paul E. Abraham</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jawdy, Sara S" sort="Jawdy, Sara S" uniqKey="Jawdy S" first="Sara S" last="Jawdy">Sara S. Jawdy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gunter, Lee E" sort="Gunter, Lee E" uniqKey="Gunter L" first="Lee E" last="Gunter">Lee E. Gunter</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Martin, Madhavi Z" sort="Martin, Madhavi Z" uniqKey="Martin M" first="Madhavi Z" last="Martin">Madhavi Z. Martin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Engle, Nancy L" sort="Engle, Nancy L" uniqKey="Engle N" first="Nancy L" last="Engle">Nancy L. Engle</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaohan" sort="Yang, Xiaohan" uniqKey="Yang X" first="Xiaohan" last="Yang">Xiaohan Yang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30689716</idno>
<idno type="pmid">30689716</idno>
<idno type="doi">10.1093/aob/mcz002</idno>
<idno type="pmc">PMC6821281</idno>
<idno type="wicri:Area/Main/Corpus">000A59</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A59</idno>
<idno type="wicri:Area/Main/Curation">000A59</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A59</idno>
<idno type="wicri:Area/Main/Exploration">000A59</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides.</title>
<author>
<name sortKey="Tschaplinski, Timothy James" sort="Tschaplinski, Timothy James" uniqKey="Tschaplinski T" first="Timothy James" last="Tschaplinski">Timothy James Tschaplinski</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Abraham, Paul E" sort="Abraham, Paul E" uniqKey="Abraham P" first="Paul E" last="Abraham">Paul E. Abraham</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jawdy, Sara S" sort="Jawdy, Sara S" uniqKey="Jawdy S" first="Sara S" last="Jawdy">Sara S. Jawdy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gunter, Lee E" sort="Gunter, Lee E" uniqKey="Gunter L" first="Lee E" last="Gunter">Lee E. Gunter</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Martin, Madhavi Z" sort="Martin, Madhavi Z" uniqKey="Martin M" first="Madhavi Z" last="Martin">Madhavi Z. Martin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Engle, Nancy L" sort="Engle, Nancy L" uniqKey="Engle N" first="Nancy L" last="Engle">Nancy L. Engle</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaohan" sort="Yang, Xiaohan" uniqKey="Yang X" first="Xiaohan" last="Yang">Xiaohan Yang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Oak Ridge National Laboratory, Oak Ridge, TN</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="eISSN">1095-8290</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dehydration (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Plant Leaves (MeSH)</term>
<term>Populus (MeSH)</term>
<term>Water (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Déshydratation (MeSH)</term>
<term>Eau (MeSH)</term>
<term>Feuilles de plante (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Populus (MeSH)</term>
<term>Sécheresses (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Dehydration</term>
<term>Droughts</term>
<term>Humans</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Déshydratation</term>
<term>Eau</term>
<term>Feuilles de plante</term>
<term>Humains</term>
<term>Populus</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND AND AIMS</b>
</p>
<p>The use of woody crops for Quad-level (approx. 1 × 1018 J) energy production will require marginal agricultural lands that experience recurrent periods of water stress. Populus species have the capacity to increase dehydration tolerance by lowering osmotic potential via osmotic adjustment. The aim of this study was to investigate how the inherent genetic potential of a Populus clone to respond to drought interacts with the nature of the drought to determine the degree of biochemical response.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>A greenhouse drought stress study was conducted on Populus deltoides 'WV94' and the resulting metabolite profiles of leaves were determined by gas chromatography-mass spectrometry following trimethylsilylation for plants subjected to cyclic mild (-0.5 MPa pre-dawn leaf water potential) drought vs. cyclic severe (-1.26 MPa) drought in contrast to well-watered controls (-0.1 MPa) after two or four drought cycles, and in contrast to plants subjected to acute drought, where plants were desiccated for up to 8 d.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>KEY RESULTS</b>
</p>
<p>The nature of drought (cyclic vs. acute), frequency of drought (number of cycles) and the severity of drought (mild vs. severe) all dictated the degree of osmotic adjustment and the nature of the organic solutes that accumulated. Whereas cyclic drought induced the largest responses in primary metabolism (soluble sugars, organic acids and amino acids), acute onset of prolonged drought induced the greatest osmotic adjustment and largest responses in secondary metabolism, especially populosides (hydroxycinnamic acid conjugates of salicin).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The differential adaptive metabolite responses in cyclic vs. acute drought suggest that stress acclimation occurs via primary metabolism in response to cyclic drought, whereas expanded metabolic plasticity occurs via secondary metabolism following severe, acute drought. The shift in carbon partitioning to aromatic metabolism with the production of a diverse suite of higher order salicylates lowers osmotic potential and increases the probability of post-stress recovery.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">30689716</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1095-8290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>124</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
<Month>10</Month>
<Day>29</Day>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides.</ArticleTitle>
<Pagination>
<MedlinePgn>617-626</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aob/mcz002</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND AND AIMS">The use of woody crops for Quad-level (approx. 1 × 1018 J) energy production will require marginal agricultural lands that experience recurrent periods of water stress. Populus species have the capacity to increase dehydration tolerance by lowering osmotic potential via osmotic adjustment. The aim of this study was to investigate how the inherent genetic potential of a Populus clone to respond to drought interacts with the nature of the drought to determine the degree of biochemical response.</AbstractText>
<AbstractText Label="METHODS">A greenhouse drought stress study was conducted on Populus deltoides 'WV94' and the resulting metabolite profiles of leaves were determined by gas chromatography-mass spectrometry following trimethylsilylation for plants subjected to cyclic mild (-0.5 MPa pre-dawn leaf water potential) drought vs. cyclic severe (-1.26 MPa) drought in contrast to well-watered controls (-0.1 MPa) after two or four drought cycles, and in contrast to plants subjected to acute drought, where plants were desiccated for up to 8 d.</AbstractText>
<AbstractText Label="KEY RESULTS">The nature of drought (cyclic vs. acute), frequency of drought (number of cycles) and the severity of drought (mild vs. severe) all dictated the degree of osmotic adjustment and the nature of the organic solutes that accumulated. Whereas cyclic drought induced the largest responses in primary metabolism (soluble sugars, organic acids and amino acids), acute onset of prolonged drought induced the greatest osmotic adjustment and largest responses in secondary metabolism, especially populosides (hydroxycinnamic acid conjugates of salicin).</AbstractText>
<AbstractText Label="CONCLUSIONS">The differential adaptive metabolite responses in cyclic vs. acute drought suggest that stress acclimation occurs via primary metabolism in response to cyclic drought, whereas expanded metabolic plasticity occurs via secondary metabolism following severe, acute drought. The shift in carbon partitioning to aromatic metabolism with the production of a diverse suite of higher order salicylates lowers osmotic potential and increases the probability of post-stress recovery.</AbstractText>
<CopyrightInformation>Published by Oxford University Press on behalf of the Annals of Botany Company 2019.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tschaplinski</LastName>
<ForeName>Timothy James</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abraham</LastName>
<ForeName>Paul E</ForeName>
<Initials>PE</Initials>
<AffiliationInfo>
<Affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jawdy</LastName>
<ForeName>Sara S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gunter</LastName>
<ForeName>Lee E</ForeName>
<Initials>LE</Initials>
<AffiliationInfo>
<Affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martin</LastName>
<ForeName>Madhavi Z</ForeName>
<Initials>MZ</Initials>
<AffiliationInfo>
<Affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Engle</LastName>
<ForeName>Nancy L</ForeName>
<Initials>NL</Initials>
<AffiliationInfo>
<Affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Xiaohan</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tuskan</LastName>
<ForeName>Gerald A</ForeName>
<Initials>GA</Initials>
<AffiliationInfo>
<Affiliation>Oak Ridge National Laboratory, Oak Ridge, TN, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003681" MajorTopicYN="N">Dehydration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="Y">Populus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus deltoides ‘WV94’</Keyword>
<Keyword MajorTopicYN="Y">acclimation</Keyword>
<Keyword MajorTopicYN="Y">acute drought</Keyword>
<Keyword MajorTopicYN="Y">cyclic drought</Keyword>
<Keyword MajorTopicYN="Y">gas chromatography–mass spectrometry</Keyword>
<Keyword MajorTopicYN="Y">metabolic perturbation</Keyword>
<Keyword MajorTopicYN="Y">metabolite profiles</Keyword>
<Keyword MajorTopicYN="Y">osmotic adjustment</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>01</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30689716</ArticleId>
<ArticleId IdType="pii">5299496</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mcz002</ArticleId>
<ArticleId IdType="pmc">PMC6821281</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 2002 Aug;22(12):849-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12184974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Nov 21;2:16178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27869799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2016 Jul;36(7):909-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27174702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Dec;32(12):1724-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2015 Mar 30;20(4):5566-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25830788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 May;18(5):291-298</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Oct 09;9(10):e107189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25299342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Oct 07;14:265</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25287590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2011 Aug;37(8):857-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21748301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Oct;18(10):653-658</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Oct;18(10):645-652</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Jun;27(6):546-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24548064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(12):R101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2012 Sep 21;5(1):71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22998926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 May;26(5):595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nat Prod. 2006 Sep;69(9):1370-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16989539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Feb 15;13(2):e0190019</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29447168</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Tschaplinski, Timothy James" sort="Tschaplinski, Timothy James" uniqKey="Tschaplinski T" first="Timothy James" last="Tschaplinski">Timothy James Tschaplinski</name>
</region>
<name sortKey="Abraham, Paul E" sort="Abraham, Paul E" uniqKey="Abraham P" first="Paul E" last="Abraham">Paul E. Abraham</name>
<name sortKey="Engle, Nancy L" sort="Engle, Nancy L" uniqKey="Engle N" first="Nancy L" last="Engle">Nancy L. Engle</name>
<name sortKey="Gunter, Lee E" sort="Gunter, Lee E" uniqKey="Gunter L" first="Lee E" last="Gunter">Lee E. Gunter</name>
<name sortKey="Jawdy, Sara S" sort="Jawdy, Sara S" uniqKey="Jawdy S" first="Sara S" last="Jawdy">Sara S. Jawdy</name>
<name sortKey="Martin, Madhavi Z" sort="Martin, Madhavi Z" uniqKey="Martin M" first="Madhavi Z" last="Martin">Madhavi Z. Martin</name>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
<name sortKey="Yang, Xiaohan" sort="Yang, Xiaohan" uniqKey="Yang X" first="Xiaohan" last="Yang">Xiaohan Yang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000674 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000674 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30689716
   |texte=   The nature of the progression of drought stress drives differential metabolomic responses in Populus deltoides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30689716" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020